Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(22)2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38003462

RESUMEN

Cordia subcordata trees or shrubs, belonging to the Boraginaceae family, have strong resistance and have adapted to their habitat on a tropical coral island in China, but the lack of genome information regarding its genetic background is unclear. In this study, the genome was assembled using both short/long whole genome sequencing reads and Hi-C reads. The assembled genome was 475.3 Mb, with 468.7 Mb (99.22%) of the sequences assembled into 16 chromosomes. Repeat sequences accounted for 54.41% of the assembled genome. A total of 26,615 genes were predicted, and 25,730 genes were functionally annotated using different annotation databases. Based on its genome and the other 17 species, phylogenetic analysis using 336 single-copy genes obtained from ortholog analysis showed that C. subcordata was a sister to Coffea eugenioides, and the divergence time was estimated to be 77 MYA between the two species. Gene family evolution analysis indicated that the significantly expanded gene families were functionally related to chemical defenses against diseases. These results can provide a reference to a deeper understanding of the genetic background of C. subcordata and can be helpful in exploring its adaptation mechanism on tropical coral islands in the future.


Asunto(s)
Antozoos , Cordia , Animales , Filogenia , Antozoos/genética , Genoma , Secuencias Repetitivas de Ácidos Nucleicos , Anotación de Secuencia Molecular , Cromosomas
2.
Ecol Evol ; 12(11): e9508, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36415875

RESUMEN

Hainan Island had experienced several cold-warm and dry-humid fluctuations since the Late Pleistocene period, resulting in separating and connecting from the mainland several times with the cyclic rise and fall of sea level. The fluctuations can change the biota and ecological environment in the island. Cycas taiwaniana Carruthers is endemic to Hainan Island and is classified as endangered by the International Union for Conservation of Nature (IUCN). To comprehensively understand the genetic dynamics of C. taiwaniana, we sampled 12 wild populations in Hainan Island and one cultivated population in Fujian province, and analyzed the genetic diversity, genetic structure, and demographic history based on the molecular data. Results revealed that C. taiwaniana had relatively low genetic diversity and high genetic differentiation. Haplotypes of C. taiwaniana diversified during the Pleistocene based on the chloroplast DNA (cpDNA) and the concatenated nuclear DNA (nDNA) data. Genetic cluster analyses based on the microsatellite (SSR) data showed that the 12 wild populations were separated into three clusters which could be three evolutionary significant units (ESUs), indicating three basic units of protection were identified. Moreover, we also confirmed the cultivated population FJ derived from the DLS1-GSL clade. Demographic inference from different data was discordant, but overall, it uncovered that C. taiwaniana had experienced population contraction events twice during the Pleistocene and Holocene, and then expanded recently. Our study elucidated the population genetic characteristics of C. taiwaniana, and guided us to develop targeted conservation and management strategies for this endangered species.

3.
Appl Plant Sci ; 7(10): e11292, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31667020

RESUMEN

PREMISE: Cycas is an important gymnosperm genus, and the most diverse of all cycad genera. The C. taiwaniana complex of species are morphologically similar and difficult to distinguish due to a lack of genomic resources. METHODS: We characterized the transcriptomes of two closely related and endangered Cycas species endemic to Hainan, China: C. hainanensis and C. changjiangensis. Three single-copy nuclear genes in the C. taiwaniana complex were sequenced based on these transcriptomes, enabling us to evaluate the species boundaries using the multispecies coalescent method implemented in the Bayesian Phylogenetics and Phylogeography program. RESULTS: We obtained 68,184 and 81,561 unigenes for C. changjiangensis and C. hainanensis, respectively. We identified six positively selected genes that are mainly involved in stimulus responses, suggesting that environmental adaptation may have played an important role in the relatively recent divergence of these species. The similar K S distribution peaks at 1.0 observed for the paralogs in the two species indicate a common whole-genome duplication event. Our species delimitation analysis indicated that the C. taiwaniana complex consists of three distinct species, which correspond to the previously reported morphological differences. DISCUSSION: Our study provides valuable genetic resources for Cycas species and guidance for the taxonomic treatment of the C. taiwaniana complex, as well as new insights into evolution of species within Cycas.

4.
Front Genet ; 10: 1238, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31921292

RESUMEN

Historical geology, climatic oscillations, and seed dispersal capabilities are thought to influence the population dynamics and genetics of plants, especially for distribution-restricted and threatened species. Investigating the genetic resources within and among taxa is a prerequisite for conservation management. The Cycas taiwaniana complex consists of six endangered species that are endemic to South China. In this study, we investigated the relationship between phylogeographic history and the genetic structure of the C. taiwaniana complex. To estimate the phylogeographic history of the complex, we assessed the genetic structure and divergence time, and performed phylogenetic and demographic historical analyses. Two chloroplast DNA intergenic regions (cpDNA), two single-copy nuclear genes (SCNGs), and six microsatellite loci (SSR) were sequenced for 18 populations. The SCNG data indicated a high genetic diversity within populations, a low genetic diversity among populations, and significant genetic differentiation among populations. Significant phylogeographical structure was detected. Structure and phylogenetic analyses both revealed that the 18 populations of the C. taiwaniana complex have two main lineages, which were estimated to diverge in the Middle Pleistocene. We propose that Cycas fairylakea was incorporated into Cycas szechuanensis and that the other populations, which are mainly located on Hainan Island, merged into one lineage. Bayesian skyline plot analyses revealed that the C. taiwaniana complex experienced a recent decline, suggesting that the complex probably experienced a bottleneck event. We infer that the genetic structure of the C. taiwaniana complex has been affected by Pleistocene climate shifts, sea-level oscillations, and human activities. In addition to providing new insights into the evolutionary legacy of the genus, the genetic characterizations will be useful for the conservation of Cycas species.

5.
Int J Mol Sci ; 19(11)2018 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-30400210

RESUMEN

Ipomoea pes-caprae is a seashore halophytic plant and is therefore a good model for studying the molecular mechanisms underlying salt and stress tolerance in plant research. Here, we performed Full-length cDNA Over-eXpressor (FOX) gene hunting with a functional screening of a cDNA library using a salt-sensitive yeast mutant strain to isolate the salt-stress-related genes of I. pes-caprae (IpSR genes). The library was screened for genes that complemented the salt defect of yeast mutant AXT3 and could grow in the presence of 75 mM NaCl. We obtained 38 candidate salt-stress-related full-length cDNA clones from the I. pes-caprae cDNA library. The genes are predicted to encode proteins involved in water deficit, reactive oxygen species (ROS) scavenging, cellular vesicle trafficking, metabolic enzymes, and signal transduction factors. When combined with the quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analyses, several potential functional salt-tolerance-related genes were emphasized. This approach provides a rapid assay system for the large-scale screening of I. pes-caprae genes involved in the salt stress response and supports the identification of genes responsible for the molecular mechanisms of salt tolerance.


Asunto(s)
Genes de Plantas , Técnicas Genéticas , Ipomoea/genética , Ipomoea/fisiología , Estrés Salino/genética , ADN Complementario/genética , Ecosistema , Regulación de la Expresión Génica de las Plantas , Biblioteca de Genes , Estudios de Asociación Genética , Peróxido de Hidrógeno/toxicidad , Anotación de Secuencia Molecular , Presión Osmótica , Potasio/metabolismo , Saccharomyces cerevisiae/metabolismo , Tolerancia a la Sal/genética , Sodio/metabolismo
6.
Int J Mol Sci ; 19(8)2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-30071625

RESUMEN

Ipomoea pes-caprae L. is an extremophile halophyte with strong adaptability to seawater and drought. It is widely used in the ecological restoration of coastal areas or degraded islands in tropical and subtropical regions. In this study, a new abscisic acid, stressandripening (ASR) gene, IpASR, was reported, and is mainly associated with biological functions involved in salt and drought tolerance. Sequence analysis of IpASR showed that this protein contains an ABA/WDS (abscisic acid/water deficit stress) domain, which is a common feature of all plant ASR members. Overexpression of IpASR improved Escherichia coli growth performance compared with the control under abiotic stress treatment. The transgenic overexpressing IpASR Arabidopsis showed higher tolerance to salt and drought stress than the wild type and lower accumulation of hydrogen peroxide (H2O2) and superoxide (O2-) accompanied by increased antioxidant enzyme activity in vivo. IpASR exhibits transcription factor's activity. Therefore, the overexpression of IpASR in Arabidopsis is supposed to influence the expression of some genes involved in anti-oxidative and abiotic stresses. The results indicate that IpASR is involved in the plant response to salt and drought and probably acts as a reactive oxygen species scavenger or transcription factor, and therefore influences physiological processes associated with various abiotic stresses in plants.


Asunto(s)
Arabidopsis , Escherichia coli , Ipomoea/genética , Microorganismos Modificados Genéticamente , Proteínas de Plantas , Plantas Modificadas Genéticamente , Salinidad , Plantas Tolerantes a la Sal , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Deshidratación/genética , Deshidratación/metabolismo , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Microorganismos Modificados Genéticamente/genética , Microorganismos Modificados Genéticamente/crecimiento & desarrollo , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Tolerantes a la Sal/genética , Plantas Tolerantes a la Sal/crecimiento & desarrollo
7.
Yi Chuan Xue Bao ; 32(12): 1286-92, 2005 Dec.
Artículo en Chino | MEDLINE | ID: mdl-16459657

RESUMEN

Genetic diversity and population genetic structure of Excoecaria agallocha, a typical mangrove associate species,were surveyed at divergent habitats (intertidal and inland). In general, intertidal populations had higher genetic diversity than inland populations. Genetic differentiation among intertidal populations (G(ST) = 0.191) were smaller than that among inland populations (G(ST) = 0.218), suggesting that gene flow via seed among intertidal populations were stronger. In an analysis of molecular variance (AMOVA), we found that 15.13% of the genetic variance could be explained by the differentiation between habitats, as compared to only 11.63% to geographical effects among five sits 181 -759 km distant from each other. This implies that markedly selection regimes result in habitat adaptation. Isolation-by-distance, Southwest Monsoon Current,China Coastal Current and genetic drift played important role in genetic differentiation of China population of Excoecaria agalocha.


Asunto(s)
Euphorbiaceae/genética , Genética de Población , Variación Genética , Genoma de Planta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...